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SUMMARY

A new vortex particle-in-cell (PIC) method is developed for the computation of three-dimensional
unsteady, incompressible viscous flow in an unbounded domain. The method combines the advantages of
the Lagrangian particle methods for convection and the use of an Eulerian grid to compute the diffusion
and vortex stretching. The velocity boundary conditions used in the method are of Dirichlet-type, and
can be calculated using the vorticity field on the grid by the Biot–Savart equation. The present results
for the propagation speed of the single vortex ring are in good agreement with the Saffman’s model. The
applications of the method to the head-on and head-off collisions of the two vortex rings show good
agreement with the experimental and numerical literature. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Vortex methods are well suited to the computation of incompressible unsteady flows. The
formulation of the equations with vorticity as a principal variable allows a natural decomposi-
tion of the flow field into rotation and irrotational regions, which are, in general, quite distinct
in external flows. Further, where the rotation region is limited in extent, the particle-based
implementations of the vortex formulation allow a compact representation of the field,
enabling computational elements to be concentrated automatically in the regions of rapid
spatial variation. Most numerical methods for solving three-dimensional viscous flow use a
spectral, finite element or finite difference discretization, usually with a fixed Eulerian grid.
These techniques may be adapted to solve the vortex form of the equations, as described by,
among others, Dacles and Hafez [1]. Alternatively, an essentially Lagrangian method, such as
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the vortex particle and vortex filament methods, or the vortex particle-in-cell (PIC) method,
which is a hybrid Eulerian–Lagrangian approach, may be used. Of these, the vortex particle
method has long been used to model unsteady flow in the two-dimensional case, particularly
since the work of Chorin [2], and three-dimensional extensions have been considered since the
1980s by, among others, Canteloube [3], Knio and Ghoniem [4] and Winckelmans and
Leonard [5]. The filament method has proven difficult to extend successfully to viscous
three-dimensional flow, and although it is not considered here, reference may be made to
Leonard [6,7] and Chorin [8].

The PIC method applied to vortices was originally described by Christiansen [9], and
versions have been presented by Graham [10] and others, mostly in two-dimensional cases and
using the streamfunction vorticity formulation. The vortex PIC method has some of the
advantages of the Lagrangian particle methods for computing convection, while using an
Eulerian grid to compute the diffusion and vortex stretching and tilting. The solution
procedure can, therefore, take advantage of fast Poisson solvers on regular grids. In relation
to the above, the objective of this paper is to develop a three-dimensional vortex PIC method
to be used to solve the Navier–Stokes equations written in a velocity–vorticity formulation.

In this paper, the vortex PIC method is applied to the computation of three-dimensional
unsteady, incompressible viscous flows in an unbounded domain. Vortex-dominated flows,
such as free jets [11] and the far-field wakes of an aircraft [12], are often very complex and are
characterized by the deformation of their vortical structures. Thus, understanding the dynam-
ics and the mutual interaction of various types of vortical motions is essential in understanding
and possibly controlling fluid motions. Therefore, the vortex ring has been selected as a case
study for the application of the present method. Before the behaviour of the vortex ring is
studied, the diffusion model of the present method is first tested. Then the propagation velocity
of the single vortex ring is compared with Saffman’s [13] model and numerical diagnostics in
terms of satisfaction of the conservation laws are provided. Finally, the mutual interaction of
the two vortex rings is investigated

2. GOVERNING EQUATIONS

In the velocity–vorticity formulation for incompressible flow, using the constrain of 9 ·u	 =0
and taking the curl of the equation with the definition of vorticity

v	 =9�u	 , (1)

a Poisson equation is obtained that relates the velocity and vorticity fields,

92u	 = −9�v	 . (2)

Taking the curl of the momentum equation gives the transport equation for vorticity

(v	
(t

+u	 ·9v	 =v	 ·9u	 +92v	 /Re. (3)
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The dimensionless variables are written as follows:

(x, y, z)= (x̄, ȳ, z̄)/Lc, (u, 6, w)= (ū, 6̄, w̄)/Uc, (vx, vy, vz)= (v̄x, v̄y, v̄z)Lc/Uc,

t= t( Uc/Lc,

where Lc is the characteristic length and Uc is the characteristic velocity of the flow.
For velocity–vorticity formulations, several studies have appeared in the literature, e.g.

Dacles and Hafez [1], Fasel [14], Dennis et al. [15], Farouk and Fusegi [16], Napolitano and
Pascazio [17], Daube [18], Ern and Smooke [19], Guj and Stella [20], and Guevremont and
Habashi [21]. Given an initial distribution of vorticity, the evolution of the velocity and
vorticity may be computed by solving Equations (2) and (3) subjected to appropriate boundary
conditions. Expressing Equation (3) in conservative form is advantageous, since with consistent
discretization, it is readily shown that an initial solenoidal vorticity field should remain so. In
this work, however, the non-conservative form is used for easy adaptation to the PIC
approach.

3. THREE-DIMENSIONAL VORTEX PIC METHOD

The vortex PIC method has been successfully used in two-dimensional steady and unsteady
viscous flows for both an internal and an external bounded domain [22,23]. For three-dimen-
sional flows, the vorticity is a vector. This implies that the vorticity may be changed by vortex
stretching or diffusion as it moves with the flow and therefore we must track vorticity as well
as the particle positions. Leonard [7] used vortex filaments to represent the vortex lines or,
alternatively, the use of vortex particles. However, the above-mentioned methods are not
suitable for viscous flows. In the following section, a brief outline of the particle method is
given for comparison with the present PIC method.

3.1. Particle methods

The first step in applying the method is to sample the initial continuous vorticity field at points
ai to obtain v0(ai), which represents the discretized vorticity. Equivalently, instead of v(xi) we
may consider the vortex strengths k� i within the sampled volumes, so that if the sampling is at
equal intervals h on a Cartesian mesh, we can represent the vorticity as k� (ai)/h3. Introducing
Lagrangian co-ordinates xi(t), where xi(0)=ai, the convection of vorticity follows from
computing the trajectories:

d
dt

x	 i(a	 i, t)=u	 (x	 i(a	 i, t), t). (4)

The velocity u	 on the right-hand side of Equation (4) can be substituted by
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u	 (x	 , t)=
&

K(x	 −x	 %)v	 (x	 %, t) dx	 %. (5)

For a three-dimensional case, kernel K can be written in matrix form as

K(x	 )= 1
4p �x	 �3 Ã

Æ

È

0
−x3

x2

x3

0
−x1

−x2

x1

0
Ã
Ç

É
. (6)

It is customary to desingularize kernel K in Equation (6) by replacing it with a smoothed
kernel, Ks, within a radius for s of r=0. Alternatively, a smooth function of the integral can
be applied to the representation of the vorticity field by convolving the Dirac d function
representation of the sampled vorticity [24]. The particle sample spacing and s should be such
that neighbouring cores overlap. The velocity of a particle or blob of Equation (5) can be
desingularized as

u	 (x	 i, t)= %
j" i

Ks(x	 i(t)−x	 j(t))kj(t), (7)

where Ks(x	 )=K(x	 )�fd(x	 ), with K(x	 ) given in Equation (6), where fd(x	 ) is a smoothing
function and equal to unity outside a radius d. Appropriate choices for fd(x	 ) are discussed by
Winckelmans and Leonard [5] and Hald [25].

The evolution of the vorticity field over a time step then follows by moving the particles and
computing changes in strength and/or positions of each particle due to diffusion and
stretching/tilting. The vortex stretching/tilting may be computed by treating

(v	
(t

=v	 ·9u	 (8)

as a fractional step, either by substituting for u	 from Equation (7) or by computing a local
approximation to the Eulerian gradient of u	 .

Several procedures have been derived to model viscous diffusion, such as the random walk
of Chorin [2] and the deterministic method of Cottet [26]. The consistency and convergence of
these schemes is addressed in papers by, among others, Hald [25] and Hou [27].

3.2. The present PIC method

In the present vortex PIC method, an initial vorticity field is discretized as a set of vortex
particles, as in the pure Lagrangian methods above. The strength of each particle is projected
onto the nodes of a fixed Eulerian mesh, and the contributions summed to find the mesh
vorticity. The velocity field is then calculated by solving Equation (2) on the mesh instead of
computing the velocity from the Biot–Savart law applied to the set of vortex particles. Thus,
the present work combines the mesh-based methods with the particle formulation to form a
hybrid method. However, in comparison with the previous pure particle method, the mesh
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effectively smoothes the vorticity over a blob approximating the cell dimensions. The projec-
tion of the vortex strengths onto the mesh is based on volume interpolation, illustrated in
Figure 1 for a vortex particle, kp, at point P within a cell. For a uniform Cartesian mesh, this
particle contributes the fraction VG/V (V=Dx ·Dy ·Dz is the volume of a cell) of its strength
to node ‘G ’, and the corresponding vorticity contribution is v=kp ·VG/V2. After solving
Equation (2), the nodal mesh velocities are interpolated back onto the particles. The diffusion
and the stretching/tilting term are computed on the mesh as a fractional step. Where diffusive
fluxes cause vorticity to enter a cell not already containing any particles, new particles are
created. The basic framework for implementation of the procedure is shown below, where the
solution update comprises a sequence of two fractional steps.

3.2.1. The calculations on an Eulerian frame

3.2.1.1. Calculating the 6elocity. To calculate the velocity field on the grid, the curl of the
vorticity field needs to be calculated for internal grid points only and can be obtained simply
by using a central difference approximation for the first derivatives. The velocity boundary
conditions can be calculated from the vorticity field on the interior grid by using the
Biot–Savart law, which is given as follows:

u	 (x	 , t)= %
i, j,k

v	 i, j,k× (x	 −x	 i, j,k)
4p �x	 −x	 i, j,k �3 ·h3. (9)

Each grid point has a support of volume h3, where h=Dx=Dy=Dz, for a uniform mesh.
The corresponding interior velocity field is then found from the Poisson equation (2) with

the Dirichlet boundary conditions described above. Applying central differencing to Equation
(2) gives the usual seven-point discretization of the Laplacian and any of a variety of
techniques may be used for the solution. For an evenly spaced grid, a fast procedure is to

Figure 1. Interpolation of vortex strengths onto mesh vorticity.
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Fourier transform the difference equations in two co-ordinate directions, and to solve the
remaining one-dimensional system by a tridiagonal solver. For example, letting u denote ux, by
a Fourier sine transformation in streamwise (x) and spanwise (y) directions, one obtains

ûm,n
k+1+2[cos(pm/J)+cos(pn/L)−3]ûm,n

k + ûm,n
k−1=h2R. m,n

k , (10)

where the caron symbol denotes a transformed quantity, R is the discretized right-hand side of
Equation (2), J and L are the number of mesh points in the x- and y-directions respectively.
The solution of Equation (10) followed by an inverse transformation yields ux ; likewise for uy

and uz.

3.2.1.2. Calculating the 6orticity. The vorticity transport equation (3) can be rewritten as

Dv	
Dt

=v	 ·9u	 +92v	 /Re, (11)

where Dv	 /Dt is the material derivative of the vorticity.
The difference between Equation (3) and Equation (11) is the absence of the convection term

u	 ·9v	 in Equation (11). In the present method, the vorticity is convected explicitly by the
moving particles. Thus, the explicit discretization of the convection term that causes smearing
of flow features in a purely grid-based method can be avoided. An explicit Euler step is used
to update Equation (11) for the vorticity at the next time level.

3.2.2. The calculations on the Lagrangian frame. Having calculated the velocities and vorticities
on the mesh points, these results are interpolated back onto the Lagrangian frame to track the
particles.

3.2.2.1. Back-projection of the 6orticity and 6elocity and particle mo6ing. The vorticity changes
due to diffusion and stretching on the mesh points is interpolated back onto the particles by
the same type of bilinear interpolation used for the forward projection. Thus, the new strength
of a particle is given by

k� p
n+1=k� p

n+ %
8

i=1

Dvi

Vi

Vti

h3, (12)

where h is the cell size and Vti is the sum of the volume contributions Vi from all particles that
contribute to the vorticity at node i. The velocity of the particles is also obtained by the same
interpolation scheme,

u	 p= %
8

i=1

u	 i
Vi

V
. (13)

The particles are moved by the first-order Euler scheme

x	 p
n+1=x	 p

n+u	 p
n ·Dt. (14)
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3.3. Outline of the algorithm

3.3.1. Initialization. (1) The initial vorticity is first discretized as a set of particles, {k� p
0}:

v	 0�{k� p
0}, (15)

then the vorticity strengths of the particles are projected onto the mesh using a volume-based
weighting interpolating,

{k� p
0}�v	 i, j,k

0 . (16)

(2) The velocity components on the mesh are determined by

9D
2 u	 i, j,k

0 = −9D�v	 i, j,k
0 , (17)

where 9D
2 and 9D are a discrete approximation to 92 and 9.

3.3.2. Update. The following sequence advances the flow over one time step:
(3) Interpolate u	 p

n from u	 i, j,k
n and move particles,

x	 p
n+1=x	 p

n+u	 p
n(x	 p) ·Dt. (18)

(4) Project particle strengths onto the mesh vorticity,

v	 *i, j,k=P{k� p
n(x	 p

n+1)}. (19)

(5) Solve for the diffusion and stretching of vorticity on the mesh,

v	 i, j,k
n+1−v	 *i, j,k

Dt
=LD(v	 i, j,k

n )+LS(v	 i, j,k
n )=Dv	 n+1/Dt, (20)

where LD and LS are the discrete diffusion and stretching operators and level * correspond to
an intermediate time level.

(6) Back-project the change in nodal vorticity (B{Dv	 }) to particles,

{k� p
n+1(x	 p

n+1)}={k� p
n(x	 p

n+1)}+B{Dv	 i, j,k
n+1}. (21)

(7) Create new particles on empty nodes, if the vorticity is larger than the tolerance,

{k� p
n+1}�{k� p

n+1}@{k� p
c}, (22)

where k� p
c are newly created particles.

(8) Solve for the velocity field that corresponds to the new vorticity field,

9D
2 u	 i, j,k

n+1= −9D�v	 i, j,k
n+1. (23)
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4. NUMERICAL RESULTS

4.1. Validation of the method

(1) The diffusion of an isolated vortex.
We had tested the diffusion scheme for the two-dimensional line vortex [23]. For the

three-dimensional flow field, the vorticity distribution is analogous to that of the diffusion of
heat from a point source [28].

v=
G0

8(pnt)1.5 exp
�−r2

4nt
�

. (24)

In this case, we use the algorithm to compute the (non-physical) diffusion of a single
component of vorticity from a point, and compare it with the analytic expression for point
diffusion. A uniform mesh of 32×32×32 cells was used, and the Reynolds number of
Re=G/n=100 was considered, where the Reynolds number is defined as the ring circulation
(G) divided by the kinematic viscosity (n). The mesh spacings were Dx=Dy=Dz=0.1 and the
time step was equal to 0.1. Figure 2 shows the vorticity field for a three-dimensional single
vortex particle at different times. From this figure, the present diffusion model is examined and
found to match the analytical solution accurately.

(2) The single vortex ring.

Figure 2. Comparison of the PIC results for diffusion from a three-dimensional point vortex with the
analytic solution (line, analytical solution; symbol, present method).
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Before we study the mutual interaction of the two vortex rings, we require a simple problem
having theoretical results with which to investigate the performance of the present PIC
method. The unsteady motion of a single vortex ring in an unbounded viscous flow is selected
as a case study to examine the present method. The Kelvin formula for the velocity of a vortex
ring of small cross-section with a uniform core vorticity distribution moving in a perfect fluid
is given by Lamb [29] as

U=
G

4pR
!

log
8R
s

−
1
4
"

, (25)

where U is the velocity of the vortex ring normal to its plane, R is the radius of the ring, G is
the circulation and s is the core radius of the ring. Thus, the propagation velocity of the ring
depends on the core radius s as well as the ring radius R. For a viscous vortex ring, Saffman
and Baker [13] accounted for the viscous decay propagation speed by replacing s by a length
scale determined by viscous diffusion. The speed of the viscous vortex ring is given by him as

U=
G

4pR
!

log
8R


4nt
−C

"
, (26)

where C is a constant dependent on the vorticity distribution within the core. For a Gaussian
vorticity distribution in the core of the ring, the constant C is equal to 0.558. From Equation
(26), the effect of viscosity is to slow down the motion of the ring. As we already noted, the
propagation velocity depends on the core radius, and Equation (26) accounts for the classical

nt viscous spreading. We will use Equation (26) to compare this with the computational
results.

4.1.1. Initial discretization of a 6ortex ring. The details that are common to all ring computa-
tions presented in this paper are given in the following subsection. The co-ordinate system used
to describe the ring is shown in Figure 3(a) and (b). The core of the vortex ring is represented
by several vortex particles. The vortex ring is thus modelled by a number of vortex particles
within its core and forming a vortex torus. The vortex ring is divided into Ns segments of arc
length Ds, as shown in Figure 3(a). We obtain Ds=2pR/Ns. Each of these Ns segments is
divided into nl layers as shown in Figure 3(b). The core structure of the vortex ring is
discretized using the same scheme as that used by Winckelmans and Leonard [5]. In this
scheme, each vortex particle is allocated part of the total cross-section area normal to the
vorticity vector, as shown schematically in Figure 3(b), where, for example, the shaded area
equals pr l

2 with rl marked. If nl=0, then one vortex particle is placed at the centre of the circle.
If 15n5nl, then additional layers are used with each vortex particle placed at the centroid
rc=rl [(1+12n2)/6n ]. Each particle has an equal area pr l

2 and the radius of the vortex ring core
is equal to s=rl(2nl+1). The number of particles per core section is Ntot=1+4nl(nl+1) and
the total number of vortex particles are Ntot=Ns [1+4nl(nl+1)].

4.1.2. Conser6ation laws for three-dimensional incompressible unbounded flows. The well-known
integral invariants for three-dimensional incompressible unbounded flow are total vorticity V� ,
linear momentum I� , angular momentum A� , and kinetic energy E. When using a set of vortex
particles to represent the flow, these quantities become
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Figure 3. (a) Angular discretization of a vortex ring into sections. (b) Discretization of the ring core.
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V� =%
p

k	 p(t)=0, (27)

I� =1
2

%
p

x	 p(t)�k	 p(t), (28)

A� =1
2

%
p

x	 p(t)� (x	 p(t)�k	 p(t)), (29)

E=
1

16p
%
p,q

p"q

1
�x	 p−x	 q �

�
k	 p ·k	 q+

((x	 p−x	 q) ·k	 p)
�x	 p−x	 q �

((x	 p−x	 q) ·k	 q)
�x	 p−x	 q �

�
, (30)

where k	 p is the strength of pth vortex particle. Equation (30) may be integrated directly from
E=1

2	 (u	 ·u	 ) dV in the Fourier space [30] or calculated in the physical space [5].

4.1.3. The propagation of a single 6ortex ring without a core. The first case considered is the
computation of the propagation of a single vortex ring without a core. In this model, the
cross-section of the ring is represented by one vortex particle with 2000 sections to define the
ring. Thus, a total of 2000 vortex particles lie on a single circle of radius R=1. The initial ring
centre is placed at (x0, y0, z0)= (2.5, 2.5, 2.0). The Reynolds number for the computation is
1000. The initial circulation of the ring was 1. The time step used was Dt=0.01 and a total of
700 time steps were performed. The mesh spacings were Dx=Dy=Dz= 5

64 and a mesh of
64×64×64 cells was used. The stretching and diffusion terms of the vorticity transport
equation were solved by an explicit finite difference scheme as described above. Far-field
velocity boundary conditions are imposed by using the Biot–Savart law with the projected
nodal strengths. Since most of the nodal points have zero vorticity in the computational
domain, they do not contribute to the velocity field. Therefore, the number of nodes carrying
vorticity is much less than the number of particles, so that the calculation of the velocity
boundary conditions using the nodal strengths is cheaper than using the particle strengths.
Also, since the particles do not approach the boundary too closely, the increase in using the
nodal lumped values is small.

The propagation of the single vortex ring without a ring core is shown in Figure 4. The
distance between the different stages has been increased artificially to allow for a better
graphical representation. A comparison between the numerical predictions of the ring speed
with the viscous decay and the analytic solution (26) is shown in Figure 5. The results show
the computations are in good agreement with the values evaluated from Saffman’s model.
Figure 6 shows the diagnostics of the single vortex ring without a core. The linear and angular
momentum should be conserved with the PIC method. However, where diffusion is intro-
duced, it is necessary to include a tolerance level to avoid creating too many particles.
Therefore, the results show a slight decrease in linear and angular momentum for the test case
(of the order of 0.3%). In Figure 6, the kinetic energy is not conserved. Actually, in viscous
unbounded flows, the rate of change of kinetic energy can be deduced by taking the dot
product of velocity with the momentum equation and integrating over an unbounded volume
[5]. Therefore, we can obtain the following equation:

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 29–50
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Figure 4. The propagation of a single vortex ring initially without a core from t=0 to t=7 with
increments of 1. The plots of vortex particles are ordered top to bottom.

dE
dt

= −nq, (31)

where q=	 (v	 ·v	 ) dx	 is the enstrophy. Note that due to viscous diffusion, the enstrophy
decreases and hence the kinetic energy decreased, either. The enstrophy is not generally
conserved in the three-dimensional case or even inviscid flows because of the possibility of
vortex stretching.

If we discretized a ring having zero core, it should have infinite velocity according to
Equation (25). This is not the case owing to the mesh effect in smoothing the velocity field,
which imposes an effective core radius. At t=0.01, the ring velocity from the numerical results

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 29–50
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Figure 5. Comparison of the numerical and the analytic results for the speed of evolution of a single
vortex ring, initially without a core.

is 0.49. If we substitute U=0.49 into Equation (25), then the ‘effective core radius’ s is equal
to 0.013. However, if we consider the effect of viscosity, i.e. use Equation (26), then the
‘effective core radius’ s is equal to 0.0097. The mesh size used in the simulation was 0.0156,
therefore, the mesh radius is 0.0078. Thus, the mesh radius is close to the ‘effective core radius’
when considering the mesh smearing effect.

4.1.4. The propagation of a single 6ortex ring with a core. In the second test case of this section,
we assign a core size in the above example. The core radius of the ring is 0.1. The Reynolds
number, time step, initial ring centre, mesh size and mesh points are the same as for the case
in Section 4.1.3. The decay of the propagation speed of the viscous ring is due to the viscous
effect, and from Figure 7, the present results are again in good agreement with the results from
Saffman’s model. The diagnostics of this case are shown in Figure 8. The linear momentum
and angular momentum show a slight decrease, as shown in Figure 6. The kinetic energy and
entrophy are not conserved. After t=2, the slopes of the decreases of the energy and entrophy
become quite flat as the decay tails off with a weaker ring.

The CPU time required for the solution of this case on 64×64×64 cells for 700 time steps
was 3 h on the Digital workstation. Simulations on grids up to 128×128×128 cells showed
that the present numerical solution converges to the analytical solution as the grid is refined.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 29–50
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Figure 6. The single vortex ring initially without core: diagnostics (a) linear momentum, (b) angular
momentum, (c) kinetic energy, (d) entrophy.

4.2. Application of the method

(1) The head-on collision of two vortex rings.
The collisions of the vortex ring with other rings have provided a wealth of information

about vortex dynamics, which is one of the most fundamental means of understanding fluid
motion, especially at high Reynolds number and in turbulent flows. In this section, two
identical vortex rings with an opposite sense of rotation moving toward each other along a
parallel line are studied. The aim of the numerical simulation of the head-on collision of two
vortex rings is to mimic the inviscid case of a ring/wall interaction by using an image vortex
ring to simulate the effect of the boundary. Since no solid boundary is involved, slip is allowed
between the two rings at the plane of collision. In the computation, the ring at Re=1000 was
considered. A mesh of 256×256×40 cells was used with 360 sections to define the ring. The
mesh spacings were Dx=Dy=Dz=0.00117. The ring radius is 0.015 and the core radius is
0.003. The time step used was 0.1.
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Figure 7. Comparison of the numerical and the analytic results for the speed of evolution of a single
vortex ring, initially with a core.

In inviscid flow, the head-on collision of the two vortex rings can be considered as the
problem of a single vortex ring moving towards a wall. In the real flow, with a solid wall, the
impinging vortex ring induced secondary vorticity, which stops the ring expanding. The
evolution of the head-on collision of two vortex rings from t=0–4, with increments of 1, is
shown in Figure 9. When two rings approach each other, their diameters increase due to the
velocity induced by the other ring. The shape of the ring core deforms from circular (t=0) to
a flattened airfoil-like shape as they collide. From Figure 9, the ring diameter expands after
collision and no secondary vortex is formed during the collision.

(2) The head-off collision of two vortex rings.
In this case, the collision of two vortex rings with equal strength moving toward one another

along a parallel, but off-axis, line is studied. This problem has been studied numerically by
Zawadzki and Aref [31], who used vortex-in-cell methods in inviscid flow to study the mixing
during vortex ring collision. They also found that the radius of the vortex ring increases during
the interaction of the two rings. Only large-scale motion of the vortices was observed in their
numerical results. They did not observe the generation of the small-scale ones during the
collision of the two rings. Recently, Smith and Wei [32] have presented detailed experimental
results identifying small-scale structures arising during off-axis vortex ring collisions. In the
present case, we examine whether a simulation using the present vortex PIC method can
reproduce more of the features seen in the experiment.

For the numerical simulation, the ring at Re=1000 was considered. Each ring is described
by 180 sections, each of 169 particles. Thus, 30420 vortex particles per ring are projected onto
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Figure 8. The single vortex ring initially with a core: diagnostics (a) linear momentum, (b) angular
momentum, (c) kinetic energy, (d) entrophy.

128×128×128 cells. The mesh spacings were Dx=Dy=Dz=0.21/128 and the initial centres
of the two rings are placed on (0.111, 0.105, 0.115) and (0.099, 0.015, 0.095) respectively. The
ring radius is 0.015 and the ring core is 0.003. The time step used was 0.1. The initial position
of the two vortex rings is shown in Figure 10 (t=0). In the present simulation, the two rings
moves along the z-direction (i.e. the two rings are offset vertically). The bottom ring moves
upward and the top ring downward. The offset of the ring axes (d) is defined as the distance
between the centre of the two rings in the x-direction. Then, a dimensionless value, d, defined
as the ratio of the offset of ring axes to the ring diameter, is 0.4 in the present simulation.

4.2.1. Numerical results: large-scale features. When two rings approached closely, the influence
of the other ring becomes dominant. In a head-on collision, the two rings move until they
touch each other and then they expand axisymmetrically. But, for a head-off collision, the
expansion is asymmetrical. Figure 10 shows the sequence of the contour plots of vorticity in
the x–z-plane. In this figure, the head-off collision results in the expansion and rotation of the
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Figure 9. Time sequence for head-on collision of two rings in the x–z-plane from t=0 to t=4 with
increments of 1. Contours plots of vorticity are ordered top to bottom.

original rings. This phenomenon is due to the asymmetrical interaction of the two rings. When
two rings move next to each other, the ‘upper right core’ tends to move to the southeast and
the ‘upper left core’ tends to move to the northwest. The ‘lower right core’ tends to move to
the southeast and the ‘lower left core’ tends to move to the northwest. Therefore, when two
rings come in contact with each other, the ‘left core pair’ tends to move to the northwest and
the ‘right core pair’ tends to move to the southeast. This interaction causes the two rings to
rotate and expand. This phenomenon was observed in the previous numerical results [31] as
well as in the experimental results [32].
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4.2.2. Numerical results: small-scale features. Smith and Wei [32] used a laser-induced fluores-
cence flow visualization technique to examine the small-scale motions resulting from the
collision. In our numerical simulation, the particle visualization for the evolution of the
head-off collision of the two rings is shown in Figure 11 (x–z-plane) and Figure 12
(y–z-plane). Smith and Wei [32] observed a wavy vortex line wrapping around the outside of
the primary vortex ring during the interaction of the two rings. In our simulation results
(Figures 11 and 12), a wavy phenomenon is observed at t=12. This wavy phenomenon is

Figure 10. Contour plots of vorticity for the head-off collision of two rings.
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Figure 11. Vortex particle plots for the head-off collision of two rings in the x–y-plane.
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Figure 12. Vortex particle plots for the head-off collision of two rings in the y–z-plane.
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caused by the non-uniform vortex stretching of the primary vortex ring. If we look at Figure
11 (t=0), the greatest vortex stretching, as well as the strongest amplification, are at the upper
and lower part, which have larger interaction regions than the side part, as mentioned in
Figure 1 of Smith and Wei [32].

After t=6, the wavy line becomes more clear and the waviness occurs at the upper and
lower part of the interaction region. In the experimental results of Smith and Wei [32], they
explained in an idealized sketch that these wavy lines can lead to reorientation of vorticity into
counter-rotating ringlets. In Figures 11 and 12, at t=9 and 12, two small ring-like structures
can be observed. Although the observation of ringlet formation in the present simulation is not
very clear, we do capture the wavy phenomena that could not be shown in the numerical
results by Zawadzki and Aref [31].

5. CONCLUSIONS

A new vortex PIC method has been developed for the computation of three-dimensional
unsteady, incompressible viscous flows in an unbounded domain. The basic framework for
implementation of the procedure has also been introduced, in which the solution update
comprises a sequence of two fractional steps. The particle moving is an unconditionally stable
procedure, but is subject to an accuracy constraint on the time step. The diffusion and the
stretching/tilting operators may be implemented as explicit procedures with corresponding
stability limits. A hybrid spectral method, utilizing Fourier transforms in two spatial direc-
tions, and a finite difference approximation in the third direction provides a fast solution
procedure for the Poisson equation. A non-physical test case, the diffusion of the isolated
vortex, was chosen to check the diffusion model in three-dimensional unbounded flows. The
results for the propagation speed of the single ring were in good agreement with Saffman’s
model. The method was applied to three-dimensional unbounded flows, including head-on and
head-off collisions of two vortex rings. In these cases, slip was allowed between the two rings
at the plane of collision and the results showed no rebounding of the rings after the collision.
For the case with head-off collision, the large-scale features of the rings after the collision were
in reasonable agreement with the previous experimental and numerical results in the literature.
However, the present results showed the development of a wavy-like vortex line wrapping
around the primary vortex ring, which was found experimentally but not reproduced in
previous numerical studies.
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